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Abstract. Some results of approximation type for multiobjective optimization problems with a finite 
number of objective functions are presented. Namely, for a sequence of multiobjective optimization 
problems P,, which converges in a suitable sense to a limit problem P, properties of the sequence of 
approximate Pareto efficient sets of the ion's, are studied with respect to the Pareto efficient set of P. 
The exterior penalty method as well as the variational approximation method appear to be particular 
cases of this framework. 
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Introduction 

This paper  deals with the approximation of the efficient solutions in the (strong or 
weak) sense of  Pareto,  of  a multiobjective optimization problem (objective taking 
values in R p) by approximate efficient solutions of approximate multiobjective 

optimization problems. 
The notion of e-efficiency (¢ @ R ~) for a given multiobjective optimization 

problem is analogous to the notion of E-suboptimality (E real) in scalar optimiza- 
tion ( p  = 1). Some properties are presented in Section 1. 

For  approximating a multiobjectivc optimization problem by "more  simple" 
ones, we introduce in Section 2 a convergence notion which preserves efficiency 
and reduces to epiconvergence in the scalar case. Variational properties of 

epiconvergence are thus extended to multiobjective optimization. Convergence of 
the exterior  penalty method  and of the variational approximation method in the 
multiobjective case can be obtained as applications of the main results of Section 
2. This is done in Section 3 and 4 respectively. 

1. Approximate Efficiency 

Let  Y = R p ordered  by the usual product  order  cone Y+ = R e+. For  the various 
ordering relationships between two elements of Y we shall use the following 

notations 

yl=>y2 i f f y 1 - y 2 ~ I I +  

y l> ly2  i f f y l - y 2 ~ Y + / { 0 }  

y l  > y~ iff  y l  _ y2 E int(Y+ ) 
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Opposite relations are noted like ~ and f .  
Moreover,  we denote yk y 2 27= 1 1 2 = y iy~ the euclidian inner product on Y and [. 

the associated norm. 
A multiobjective optimization problem (MOP) is defined by a nonempty set C 

(the feasible set) and a function f :  C---> Y (the (multi)objective). First, let us 
recall the definition of approximate efficiency (also called epsilon efficiency) 
introduced in 1979 by Kutateladze [7] and used in [12] for computational purposes 
and in [10] in the context of duality theory in vector optimization. This definition 
makes precise what is understood by approximately minimizing the objective. 

DEFINITION 1.1. Let P = (C, f )  be a MOP and • E Y. Define 

• - Es(P):= {5 E C; Vx ~ C, f ( Y ) ~ f ( x )  + • } ,  

• - Ew(P ) := (~ E C; Vx E C, f ( Y ) J f ( x )  + • } .  

R E M A R K  1.1. 

1. If • = 0, Es(P) := 0 -  Es(P) (resp. Ew(P ) := 0 -  Ew(P)) is the strong (resp. 
weak) Pareto efficient set of P. 

2. Although, as in the scalar case, local efficient solutions can be considered, this 
paper deals only with global efficient solutions and thus relates to global 
optimization. 

3. Denoting by f/: C--->R (resp. ei), i = 1 , . . . ,  p, the components of f (resp. e), 
E E C is an •-efficient solution in the strong sense of Pareto of problem P (or 
more simply, E is •-strong Pareto), i.e., • ~ • - Es(P), if and only if there 
exists no x in C which improves each f~ no less than e i and some f~ more than •i ,  
or equivalently, for every x in C, if x improves some f / m o r e  than •i, there 
exists ] ~ i such that the improvement of fj is lesser than •j. 
In the same way, E E C is an •-efficient solution in the weak sense of pareto of 
problem P (or more simply, E is •-weak Pareto), i.e., J? E • - Ew(P), if and 
only if there exists no x in C which improves each f,. more than ei, or 
equivalently, for every x in C, there exists some i such that the improvement of 
f~ is not greater than e i. 

4. I f p  = 1, 

- E s ( e )  = - e w ( e )  

= • - A r g m i n c f : =  {E @ C; f (£ )  infc f + • } .  

Thus e-efficiency reduces to •-suboptimality in the scalar case. 

The following simple results clarify the relationships between the different notions 
introduced above. Omitted proofs are trivial. 



A P P R O X I M A T I O N  IN M U L T I O B J E C T I V E  O P T I M I Z A T I O N  

P R O P O S I T I O N  1.1. We have (see f igure f o r  an illustration) 

1. V ~ @  Y 

e -- E s ( P  ) = f - l { f ( C )  f'l [ Y / ( f ( C )  + Y+/{O} + E ) ]} ,  

e - E w ( P  ) = f - ' { f ( C )  A [ Y / ( f ( C )  + int(Y+) + E)]} .  

2. e ' > - E 2 ~  Z _ E ~ ( P )  C ~ t _ E ~ ( P ) a n d  E 2 - E ~ ( P )  C , ' - E ~ ( P ) .  

3. V ~ @ Y , e - E s ( P  ) C ~ - E w ( P  ). 

4 .  2 > ~ ~ ~ _ E w ( P )  c , ~  - E , ( P ) .  

In particular, VE > O, E w ( P )  C ~ - Es (P) .  

5. E,(P) = ~ ~ -  E~(e), E~(e )=  N ~ -  E A P ) .  
~ > 0  ~ > 0  
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Fig. 1. 
X = Y = R 2, f = identity 
C = closed area limited by the curved line ABCDEFGA 
E,(P) = closed line AG, E,(P = dosed line AGE, 
~ - Ew(P ) = dosed area limited by ABCIJDEFGA. 
e 1 - E,(P) = a ~ - Ew(P) expected segments [C, I[ and [D, J[. 

2 _ Ew(p ) = closed area limited by ABHFGA. 
2 _ E,(P) = 2 _ Ew(e) excepted segments [B, H[ and ]G, F]. 
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Proof .  
prove 
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We just give the proof of 5 for the strong case. Let 2 @ C. We must 

~ / E ~ ( P ) ¢ ~ 3 • > 1 0 ,  E ~ e -  E~(P) 

o r  

3 x ~ C ,  f ( ~ ) - f ( x ) > ~ o ~ 3 e ~ o ,  3 x ~ C ,  f (~)- f (x)>-•  

which is true (for the implication to the right take • = ( f ( £ ) -  f ( x ) ) / 2 ) .  [] 

PROPOSITION 1.2. 1. Let  • E Y and y E Y.  Then 

y > (resp. >i )O<=>y.• - A r g m i n  Py C • - E s ( P  ) (resp. • - Ew(P) )  

where  

y . •  - A r g m i n  Py := {x E C; y . f ( x )  <- y . f ( x )  + y . • ,  V x  E C } .  

2. Le t  o~ ~ R ,  y E Y /  (O} and • = aY/ I  Y 12. Then 

y > (resp. >>- ) 0 ~  ce - A r g m i n  Py C • - E~(P)  (resp. • - e w ( P ) )  

3. I f  C is a convex  subset  o f  a vector space and i f  each f~ is convex ,  then fo r  every 
E • - E ~ ( P )  there exists y >i 0 such that 2 E y . •  - A r g m i n  Pr" 

Proof .  1. Immediate by contradiction. 2. Direct consequence of 1. 3. The 
same as • = 0 ([1], proposition 4, p. 298, or [6]). [] 

The following proposition deals with the question of existence of inexact efficient 
points. 

PROPOSITION 1.3. We have 

1. V• <- (resp. < 0 ,  • - E~(P) (resp. • - Ew(P) )  = ~. 

2. Le t  • ~ O. I f  f is bounded  f r o m  below then 

• ~ ( r e s p .  ~ ) 0 ~  • - Es (P  ) (resp. • - Ew(P))  ~ .  

Proof .  We just give the proof for the strong case. 
1. If  E~(P) ~ ¢J, then 

VE @ E , ( P ) ,  f ( E ) ~ f ( E )  + •, i.e., 0 ~ ' • .  

2. Vy ~ 0 the real function y . f ( . )  is bounded from below on C. Furthermore, we 
can find some y > 0  such that y . •  > 0 .  Therefore y . • -  A r g m i n ( P y ) # g .  Then 
apply Proposition 1.2. [] 

R E M A R K  1.2. If E E e - Es (P  ) (resp. e - Ew(P) )  for some e E Y, by Proposi- 
tion 1.1 (2.), there exists • '  = 0  such that E E  • '  - Es (P )  (resp. e' - Ew(P) ) .  



A P P R O X I M A T I O N  IN MULTIOBJECTIVE OPTIMIZATION 121 

P R O P O S I T I O N  1.4. Let P = (C, f )  be a M O P  in which C is assumed to be finite. 
Then 

3 e  > 0  such that e - Ew(P ) = Ew(P ) . 

Proof. Let F = {(x, x ' )  E C x C; f (x)  > f ( x ' ) } .  
If F = ~J, then 

Ve >--O , Ew(P )=  • - Ew(P ) =  C . 

If F ¢ ~, let 

7 = min(x,x,)er mini(f/(x) - f / ( x ' ) )  . 

Notice that Y > O. Let £ ~ C, £ ~ E w ( P  ). Then 

3x  E C ,  f (E)  > f (x)  

which implies 

f ( £ )  > f ( x )  + ( f ( £ )  - f ( x ) ) / 2 .  

Therefore,  2 ~ e  - E~(P)  with ~ := 7/2,  i = 1 , . . . ,  p. [] 

R E M A R K  1.3. The analogous result for strong Pareto efficiency is not true in 
general as it is proved by the following counter-example 

Y = R  2, C = {(0, 0), (0 ,1) ,  (1, 0), (1,1)} C R 2, f ( x ) = x .  

Then E,(P)  = {(0, 0)} and for all e 5~'0, e - E,(P)  contains at least one of the 
three other points of C. 

2. Main Approximation Results 

Hereaf ter ,  the feasible sets of all considered MOPS are assumed to be subsets of 
the same topological space X. For D C X and g : D ---> R, we shall denote by ~ the 
extension of g by + ~  outside D. 

D E F I N I T I O N  2,1. A sequence of MOPS (Cn, f " )  converges to the MOP (C, f )  
and we note (C , ,  f")---~ (C, f )  iff the two following sentences hold 

V x E C ,  3{Xn}CX,  such that Vn x,  ~ C, , ILmx n = x a n d  

Vi lim s u p . ~  f ~ ( x . )  <~ f~(x), (1) 

Vx @ X V{Xn} C X such that lizn ~ x.  ~- x, then 

Vi lira inf.o= f---~(x.) >~ ~(x ) ,  (2) 

recalling that when x ~" C (resp. x.  ~" Cn)J~(x ) (resp. TM f i (x , ) )  = +~. 
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R E M A R K  2.1. 
1. If p = 1, this notion of convergence reduces to the one of (sequential) 

epiconvergence which during the past twenty-five years, has had many applica- 
tions in the limit analysis of sequences of variational problems [2] and in 
perturbation of iterative methods for scalar optimization [8]. 

2. If p/> 2, this notion is stronger than the epiconvergence of each sequence of 
scalar optimization problems {(C~, f~)}. Namely, in the first sentence (1) the 
sequence {x,,} must be common to each sequence of scalar problem. Nevertheless 

3. If (C, ,  go) is a sequence of scalar (go: C , - - ~ R )  optimization problems 
which epiconverges to the scalar optimization problem (C, go) we get trivially that 

n the sequence of MOPS {(Cn, g~n'-= go, i =  1, . . . ,  p)} converges in the above 
sense to the MOP (C, & := go, i = 1 , . . . ,  p). The following Proposition 2.1. 
deals with a less trivial case where separate epiconvergence implies convergence 
in the sense of Definition 2.1. 

4. Since this notion implies the epiconvergence of each scalar optimization 
problem (C, f~)  to (C, f,.), convexity is preserved, i.e., if X is a topological 
vector space and if each (C  a , f T )  is a convex optimization problem then so it is 
for each (C, f~) ([2], Chap. 3) in other words if the P, are convex MOPS so it is 
for P. 

5. An interpretation in terms of set convergence involving the epigraphs and 
the complements of  the strict hypographs of the f " ' s  and f can be given [9]. 

PROPOSITION 2.1. Le t  (X ,  II. II) be a finite dimensional  n o r m e d  vector space 

and  (C, f ) ,  (C  n , f " ) ,  n E N,  convex  M O P S  such that 

V I E ( 1  . . . .  , p } , ( C , ,  f T ) ~ ( C ,  f~). 

A s s u m e  fur ther  (qualif ication assumption)  intC ~ O. Then 

(c., (c, f ) .  

Proof .  We must only verify sentence (1) in Definition 2.1. 
Let B denote the unit ball in X. Thanks to the qualification assumption and the 
finite dimension q of X there exist a E C, sl > 0  and a qp-simplex S = co{yk ;  

k = 1 . . . . .  qp + 1} in X p (product space endowed with the sup norm) such that 

0 E intS C S C int(s~B p) C (a . . . .  , a) - C p . 

So there exists z k ~ C p such that 

y k ' i = a - - g k ' i ,  k = l  . . . .  , q p + l ,  i = l , . . . , p .  

Then, from the convergence assumption, there exists z k'i E (7, such that Zng'*--+ z k'i 
n k i  and ltmsup,__.=f i (z  ~ )-< ~" k,ix k ( z  ). 

k i .  k i  Let us set y," . = a - z  n" and Sn=co{y~;  k = l , . . . , q p + l } .  There exists 
0 < s o < s t such that for n large enough, 

So Bp  C S .  C in t ( s iBP)  . 



APPROXIMATION IN MULTIOBJECTIVE OPTIMIZATION 123 

i 
Now let x E C .  For each i, there exists x~CC,, such that x,,--*x and 

• n i limsup,,__.= f i (x,,) ~ fi(x). 
We shall build a sequence {x,} not depending on i and suitable for each i. Let  

t , ,  = m a x ,  II x'. - x II. For n large enough, 
i 

X n - -  X - i  
S o ~ = a - - Z n ,  

t n 

where - i ~ qp + 1 k,i z~ =--k=~ lXk.~Z~ , for some /Xk,~ >~0 with ~,p+l k= 1 /~k,n = 1. Take 

So tn SO i tn - i  
X n - - - - x + - - a = - - X n +  Z, ,  V i = l , . . . , p .  

S o W t  n S o +  t n S o + t  n S o W  t n 

We have x,  ~ C, and x,---> x. Moreover, because f~. is convex, and as n---> ~, 
f n t  k , i \  ~(x, ) is bounded above and t,---~0, sentence (1) is satisfied with {x,}. [] 

R E M A R K  2.2. In fact, Proposition 2.1 can be obtained as a corollary of a result 
in [3] (Theorem 1.1). The direct proof given here for the sake of selfcontaining is 
largely inspired from [3]. 

PROPOSITION 2.2. Let f", f :  X--> Y such that f"  converges to f uniformly and f 
is continuous• 

Let (C,, g"), (C, g) be MOPS such that (Cn, g")---~ (C, g). Then 

(C,, f"  + g")---> (C, f + g). 

Proof. It is easy to see that under the assumptions on the f "  and f,  x = 
lim,__.=x, implies f(x) = l im,~.=f"(x,) .  

Then the conclusion follows trivially from Definition 2.1 noticing that the 
extension o f f "  + g" (resp. f + g) by +Qo outside C, (resp. C) is equal to the sum 
of f "  (resp. f )  and the extension of g" (resp. g). [] 

R E M A R K  2.3. If X is a metric space or a topological vector space, the uniform 
convergence can even be assumed on the bounded subsets of X. 

C O R O L L A R Y  2.1. Assume that fn and f are as in Proposition 2.2. If C is a 
non-empty closed subset of X, then 

(C, f°)-- ,(C,  f ) .  

Proof. It is enough to check that for every non-empty closed subset C of X and 
every objective g: C---> Y such that each gi is lower semi-continuous, we have 

(C, g ) ~  (C, g) (3) 

and then apply Proposition 2.2 with g ~ 0. In proving (3) the only difficulty is 
verification of the sentence (2) in Definition 2.1 in the case where x does not 
belong to C. 
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Let  x,--~ x. Because C is closed, the set of indices n for which x,  E C is finite 
and then 

Vi, l iminf L(xn) = + ~  = L ( x ) .  [] 

R E M A R K  2.4. Corollary 2.1 provides a framework for approximating a MOP in 
which only the objective is approximated. This type of approximation, rather 
restrictive because it does not allow one to take into account an approximation of 
the feasible set (for instance by penalization of the constraints in multiobjective 
programming), has been considered in [5]. 

C O R O L L A R Y  2.2. Let f :  X---) Y be a continuous mapping and {(C,,  g")} a 
sequence of  MOPS converging to some MOP (C, g). Then 

(C~, f +  g")--*(C, f + g). 

Proof. In Proposition 2.2, take fn  = f. [] 

Concerning the relationship between the convergence of a sequence 
{P, := (C~, f " )}  of MOPS to the MOP P := (C, f )  and the epiconvergence of 
the scalarized problems P,,y := (C,,  y.f"(.)) where y is given in Y, we have the 
following easily proven result. 

PROPOSITION 2.3. I f  P, ~ P then for all y in Y+, Pn,y epiconverges to Py. 

We shall state now tile three main results dealing with approximation of the 
efficient set of a MOP in the weak or strong Pareto sense. 

T H E O R E M  2.1. Let {P, : = ( C  n, f " ) }  be a sequence of MOPS such that 
Pn---~ P := ( C, f ). Consider a sequence { E"} C Y with limn__,=E" = 0, and sequences 
{nk) C N and {Xk) C X such that Xk E e "k -- E,,(Pnk ), xk converging to some Y. 
Then 2 @ Ew(P ). 

Proof. Let  x E C. Consider a sequence {x,} associated with x by Definition 
2.1, sentence (1). We have 

n k - -  ~ n k  n k  Vk ~ N ,  3ik , f ik (xk) - f ik ( x . )  + % .  

In fact, as the set of indices i is finite, we can assume (after another extraction 
of a subsequence) that i k does not depend on k. Let us call it i. Then 

n k - -  n k V k @ N  f i  (Xk)~fnk(x  )+E~ . (4) 
J t \ n k l  

Now define the sequence {~}  by 

~, = k i f  n = n k , 

otherwise.  

Clearly ~ ~ 2. From (4) and since lim~_~e ~ = O, 
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f , ( x . )  " f/(£) <~ lira inf TM ~ • 

liminf ~ k  - ~ • . . f i (Xk) ~ hm sup f~k(x,~) ~ lim sup f i (x,)  ~ fi(x) (5) 
k---~¢o k ~ o o  n---~oo 

In (5) the extreme inequalities are obtained from Definition 2.1 (sentence (1) 
yields the right one, sentence (2) yields the left one). As f~(x) is finite (5) implies 
that j~(£) is finite, i.e., £ E C and j~(E) = f/(£). So 

V x ~  C,  3 i ,  f~(£)<~f~(x), i.e., £ E E , ( P ) .  [] 

REMARK 2.5. The analogous result for strong Pareto efficiency is not true in 
general. Otherwise, for every MOP P := (C, f )  where C is compact and f 
continuous, as E~(P) # ~ and (see the proof of Corollary 2.1) P--~ P, E~(P) would 
be (sequentially) closed, which is not true in general. However, in some special 
cases, Theorem 2.1 for strong Pareto efficiency holds true, for instance if X is a 
vector space, C is convex and all the f~ are strictly convex. In this case E,(P) = 
Ew(P ) and the result comes from Theorem 2.1 and Proposition 1.1 (3). This has 
already been noticed in ([11] Theorem 2.2), in the special context of penalization 
and for exact efficient points, with a direct proof. Another special case is given by 
the following proposition. 

PROPOSITION 2.4. Same assumptions as in Theorem 2.1 except {Yk} being 
defined by (let y > O) 

Y~k E y.e "k -- Argmin P~,y 

(therefore, by proposition 1.2(1), £k E e "k - Es(Pk) ). Then £ E E~(P). 
Proof. By Proposition 2.3, P,.y epiconverges to Py. Then, by Theorem 2.1 

itself applied to the scalarized problems taking account of Remark 1.1 (4), we get 
£ E Argmin Py. Then by Proposition 1.2(1), E E E~(P). [] 

The second main result is, in some sense, the converse of the first one, stating that 
every weak (therefore strong) Pareto efficient point of P can be obtained as a 
limit of a sequence of a"-strong Pareto efficient points of P,. 

THEOREM 2.2 Let (P,  := (C,,  f")} be a sequence of  MOPS such that 
Pn --~ P : = ( C, f ). Assume there exists a relatively sequentially compact subset D of  
X such that, for all n, C n C D. Then, i r e s ( P )  # ~, for any £ E Ew(P ) there exists a 
sequence of  e ~ > 0 with lim,~=e" = 0 and a sequence {2,) such that lim,_o= 2, = 
and xn E e" - Es(Pn) for all n large enough. 

Proof. Consider a sequence {2,} associated with nx by Definition 2.1, sentence 
(1). We follow the method of proof given in ([2] Theorem 2.2 (ii)) for the scalar 
case. We shall first prove the following property 

V e > 0 ,  3n~, Vn>-n~,  £ , ~ e - E s ( P , ) ,  (6) 
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otherwise 

3 e ° > O ,  

hence 

3 e ° > O ,  
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- 0 
3 ( n k } ,  V k ,  xnk~e  - Es(P,,k), 

n k - -  0 3(nk ) ,  V k ,  3Xk~C,,~,, V i ,  f i  (X,,k)>~fn~(Xk)+ei" 

(7) 

The sequence {xk} contained in D is relatively sequentially compact. So there 
exists a subsequence {nh} of {nk} and x ~ X such that Xh---~X. From (7) and 
Definition 2.1 we get 

n h - -  0 0 Vi ,  f ,  (X,,h)~fTh(Xh)+ E i = / T h ( X h )  -~ E i 

and 

f~(£) i> lim sup fTh(£h) I> lim inf fTh(Xh) + e ° >~ )~(X) + e ° . 
h---*~o h - - ~ o o  

Therefore,  ~(x) is finite, i.e., x C C. Furthermore 

Vh ,  3ih,  fTh(Xh)<<-fT~(2,,h)+ fiih(X)--fih(£)-- E °i~, (8) 

otherwise, by (7) we would have 

Vi ,  f / (Y)>f~(x) ,  i.e., £~(.E,,(P). 

In (8) we can assume, since the set of indices i is finite, (after another extraction 
of a subsequence) that i h does not depend on h. Let us call it i. Then 

o (9)  V h ,  f ? ( x h )  < - f ? ( ; D  + f (x) - , i  • 

From (9) and Definition 2.1 we get finally 

3 i ,  e °~<0 contrary with e ° > 0 .  

So (6) is proved. 
Consider now a sequence of e ~ >  0 such that lira . . . .  e " =  0. From (6) we get 

Vv , 3N.  , Vn >~ N~ , £. E e ~ -  Es(P.) , 

where the map v ~ N~ can be assumed strictly increasing. 
For every n//- N 1 there exists a unique v such that N. ~< n < N~+a. Calling it 

v(n) and setting e" = e~(") we have 

Vn >- Nx , 2, E ~" - E,(P,,) 

and, because the map n ~ u(n) is increasing, lim,_~= e" = 0. [] 

For  the strong Pareto case, the following third main result extends a one of ([11] 
Theorem 2.1) stated in the specific context of penalization (see Section 3 below, 
Proposition 3.4). 
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T H E O R E M  2.3. Let {Pn := (C, ,  fn)} be a sequence of MOPS such that 
Pn ---> P := ( C, f ). Assume there exists a relatively sequentially compact subset D of 
X such that, for all n, C, is closed and contained in D, and fn is lower 
semi-continuous (i.e., each component f7 is a real lower semi-continuous 
function). Then, Es(e ) ~ O, and for any 2 E Es(P) there exists a sequence {£n} C 
X such that 

1. Vn, 2, ~ Es(P,) and l i m ~  f~(£~) = f ( 2 ) .  
2. The set of limit points of subsequences of {£~) is nonempty, contained in C 

and its image by f is {f(2)} (hence it is contained in E~(P)). 
Proof. Definition 2.1 (1) implies C C D. Then E,(P) ~ O. 

Let 2 E Es(P ) and {x~} associated with £ in Definition 2.1, sentence (1). For all 
n, there exists £~ E E~(P,) such that 

f"(2n) <= f~(xn). (9') 

Since {£~} C D, there exists a convergent subsequence. 
Consider such a subsequence {2~} and x ° its limit point. Define the sequence 

{~7.} by 

l£nk if n = n k 
| 

[ x ° otherwise.  

By Definition 2.1 and (9') ,  by lines of reasoning similar to those used 
previously to derive (5), we get 

Vi, )~(x °) ~< lim inf TM ~ nk - n k  - f i (Xn) ~ lim inf - <  f i (Xnk) ~ lim sup f i (x,~) <~... 
n - - >  oo k---'. ~ k---~ o~ 

n k n • " ~ lira sup f i  (x, k) ~ lira sup f i(x,,) ~ f i ( x ) .  
k--e-~ n---~oo 

Therefore,  J](x °) is finite, i.e., x ° ~ C, and f(x °) <=f(2). Hence f (x °) = f ( 2 )  and 
limk_~ ~ f"k(Y,k ) = f(2). 

We have just proved that from any subsequence of { f " (£ , )} ,  we can extract a 
subsequence which converges to f(2). Therefore, lim._.~ f ' (:~.)= f(2). [] 

3. Application to Penalty Methods 

Let P := (C, f )  be a MOP where f is continuous. Assume there exists a positive 
continuous function: ~b : X---~ R and a closed subset D C X such that 

c = {x E o ;  = 0}.  

Notice that C is then closed. 
Classical exterior penalty functions used in mathematical programming enter 

into this framework [13]. 
For r > 0 we consider the MOP Pr := (D, f r )  where 

r .  
f i . = f i + r ( 9 ,  i = 1  . . . . .  p 
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PROPOSITION 3.1. Let {rn} be a sequence of  positive reals such that 
limn__,~ r, = +oo. Let P~ := Pr,. Then 

Pn--, P .  

Proof. By Corollary 2.2 and Remark 2.1 (3), it suffices to prove the conver- 
gence of the sequence of scalar optimization problems (D, Gq5) to the scalar 
optimization problem (C, g) where g = 0. This is well-known in epiconvergence 
theory [2]. Nevertheless, for the sake of selfcontaining, let us give here a simple 
proof. For this, sentence (1) of Definition 2.1 is trivially satisfied with x~ = x. 
Sentence (2) is also trivially satisfied in the case where x belongs to C because 
~ ( x ) = 0  and Gqb(z)>-O for every z ~ X .  If x does not belong to C, then 
g(x) = +o~ and, as C is closed, for n large enough x, does not belong to C. Notice 
that 

(z ~ C  and z ~ D) @ ~b(z) > 0 (10) 

If the set of indices for which x, E D is finite, then, for n large enough 
rnqb(x,) = +~  and sentence (2) is satisfied. If this set is not finite there exists a 
subsequence {nk} such that x,k E D. Therefore x E D because D is closed and 
r.~b(x.k ) = r.k~b(nn, ) which converges to +oo because ~b is continuous and ~b(x) > 
0. Finally 

lim inf r ~ c b ( x ~ )  = + o o  . [ ]  
n---~oo 

The following three results come directly from Proposition 1.3 (2), Proposition 
3.1 and, respectively, Theorems 2.1, 2.2, and 2.3. The details of proof are left to 
the reader. We assume in addition that D is sequentially compact. 

PROPOSITION 3.2. Consider a sequence {tEn}c Y/{0} such that e"•O and 
limn~ ~ e n = 0. Then 

1. Vn, E " - E , ( P n ) ~ O .  
2. for any (~,} such that V n £  n E ~ " - E w ( P , ) ,  the set of  limit points o f  

subsequences o f  {E,} is nonempty and contained in E~(P). 

PROPOSITION 3.3. Ew(P ) ~ 0 and V£ E Ew(P), 3{E"} C Y, 
limn__,~ n = 0 such that £ ~ e n - Ew(P~) for n large enough. 

~" > O, 

PROPOSITION 3.4. Es(P ) # 0 and VE E Es(P), ]{£n} C D such that 
1. Vn, 2n @ G ( P , )  and limn~ = f " ( • )  = f ( i ) .  
2. The set of  limit points of  subsequences of  {~,} /s nonempty, contained in 

E~(P) and its image by f is {fiE).} 

R E M A R K  3.1. Proposition 3.2 above has already been obtained in [11] with 
E"=  0 and under additional convexity assumption. 
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The  two following f inite convergence results, specific to the penalty method and 
useful in integer multiobjective programming, slightly extend a one of ([11] 

Theo r e m 3.1). 

P R O P O S I T I O N  3.5. A s s u m e  D is finite. 

Le t  cr := min~eD/c ok(x) and M := maXx.~,eo m a x i ( f i ( x )  - f i ( x ' ) ) .  Then  

V • ~ 0 ,  V r > ( M + m a x i E i ) / o ' ,  • - E w ( P r ) = • - E w ( P )  

• -- Es(Pr)  = • -- E s ( P  ) . 

Proof .  1. • - E w ( P , )  (resp. • - E~(P,))  C • - E w ( P  ) (resp. • - E~(P)) .  

Let  x~ E • - Ew(Pr) .  Then xr ~ D and we have 

V x E  C ,  3ix such that f~x(x,) + r&(x,)<-f~x(X)+ e~ . 

Then 

rq~(xr) <<- M + max  i e i . 

Therefore ,  ~b(xr) < or. Then x r @ C and hence xr @ • - E w ( P  ) (resp. • - E s ( P  ) if 

Xr • - 

2. • - E w ( P  ) C • - Ew(P,);  • - E , ( P )  C • - E~(P~). 

Let  £ ~ e - E w ( P  ) (resp. • - E~(P)) .  We have £ E C and 

V x E  C ,  f ( Y ) ~ ( r e s p .  ~ ) f ( x ) +  •. (11) 

Now let x ~ D / C .  By definition of M and or, we have 

Vi  , f i (x)  + rq~(x) + e i >~ f i (x)  + ro- + ei > f , (£)  + 2•i ~f/(-~) 

which joined to (11) gives 

Vx E D ,  f f (£ )U ' ( r e sp ,  f ) f f ( x )  + • ,  

i .e. ,  £ ~ • - Ew(Pr)  (resp. • - Es(Pr)  ). [] 

C O R O L L A R Y  3.1. Under  assumptions o f  Proposit ion 3.5, let sequences {~"} C 
Y+, { r . )  c R+,  such that l im ._ .=•"= 0 and lim._~=r. = +0o. Then,  f o r  n large 

enough 

• , _ E w ( P , )  = E w ( P  ) . 

Proof .  Let  • > 0 defined in Proposition 1.4. We have 

=IN 1 such that Vn I> N 1 , •n . ~  • 

3 N  2 such that Vn  >i N 2 , r ,  > ( M  + max ie i ) /o ' .  

Then,  Vn ~> m a x { N  1 , Nz} r, > ( M  + max:7)/~. 
Hence  •"  - E w ( P , )  = •"  - E ~ ( P )  = E ~ ( P ) ,  the last equality coming from 

Proposit ion 1.4. [] 
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4, Application to Variational Approximation 

Along this section X is assumed to be a real reflexive Banach space, C~, n @ N 
and C are non-empty closed convex subsets of X and f :  X--> Y is convex and 
norm continuous. 

DEFINITION 4.1. (see [2]). We say that C n converges to C in the Mosco sense 
M 

and we denote Cn ~ C if the two following sentences hold. 

V x E C ,  3 { x . } C X s u c h t h a t V n ,  x ~ C . , a n d x = s -  lim x . ,  
n--~  + oo 

V x E X ,  V{nk}, V { X k } C X s u c h t h a t V k ,  X k ~ C ,  k 

a n d x = w -  lira x k , then x ~ C , 
k---~ + m  

where s (resp. w) refers to the norm (resp. weak) topology of X. 

(12) 

(13) 

PROPOSITION 4.1. Let Pn := (C,, f )  and P := (C, f ) .  
M 

I f  Cn ~ C then Pn ~ P for  both norm and weak topologies o f  X .  

Proof. f being norm continuous, (12) implies sentence (1) of Definition 2.1 for 
the norm (hence for the weak) topology. Now let us rewrite in the present 
situation, sentence (2) of Definition (2.1)under the following equivalent setting 

Vx E X, V{nk}, V{Xk} C X such that V k x  k E C,~ and x = lim x k , 
k - - , =  

then 

>If(x) i f x E C ,  
Vi ,  liminff,-(Xk)k__,~, = +~  i f x f ~ C .  (14) 

Then, since each f~ is lower semicontinuous for the weak topology, (13) implies 
(14) for the weak (hence for the norm) topology. [] 

R E M A R K  4.1. When p = 1, this type of approximation of (C, f )  by (C,, f )  
reduces to the abstract formulation of discretization methods like finite elements 
method for convex variational problems ([4], Chap. 4). 

Hereafter we assume that C is bounded, that for all n, C n C D where D is a 
M 

bounded subset of X and that C n ~ C. Then, noticing that in a reflexive Banach 
space a bounded subset is weakly relatively sequentially compact, that a dosed 
convex subset is weakly dosed and that a norm continuous real convex function is 
weakly lower semi-continuous, the three following results come directly from 
Proposition 1.3 (2), Proposition 4.1 and, respectively, Theorems 2.1, 2.2, 2.3, X 
being equipped with the weak topology. 

PROPOSITION 4.2. Same statement as Proposition 3.2. 
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PROPOSITION 4.3. E ~ ( P ) ¢ O  and V 2 E E ~ ( P ) ,  3{en}cy, en>0, with 

limn__,~ ° n = 0 and 3{~?n} C X such that limn__,~ 2n = 2 and 2 n E e ~ - Ew(P~) for  n 

large enough. 

PROPOSITION 4.4. Same statement as Proposition 3.4. 

5. Conclusion 

This paper deals with results concerning the approximation of both efficient 
solutions and multiobjective optimization problems with applications to exterior 
penalization and to variational approximation. The main tools introduced to do 
that are, on the one hand, a notion of approximate efficient solution which 
reduces to the one of suboptimal solution in scalar optimization and, on the other 
hand, a kind of equi-epiconvergence of a finite number of real functions. Most 
variational properties of epiconvergence are thus extended to multiobjective 
optimization. 

As in the scalar case such type of approximation aims to replace an optimiza- 
tion problem by simpler ones for the computational point of view. For instance, in 
multiobjective programming the penalty results of Section 3 can be used to 
remove nonlinear constraints. 

Thus, although the present work is rather of theoretical interest, its results may 
be of potentially practical benefit in designing effective numerical methods for 
computing compromise solutions to optimization models of multicriteria decision 
making. 
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